Pre-class Warm-up!!!

Consider a system $x^{\prime}=A x$ where A has an eigenvector $\left[\begin{array}{c}1 \\ 2-i\end{array}\right]$ with eigenvalue $\lambda=1+3 i$.
We get solutions $\left[\begin{array}{c}1 \\ 2-i\end{array}\right] e^{(1+3 i) t}$ and its complex conjergate.

$$
\begin{aligned}
& {\left[\begin{array}{c}
1 \\
2-i
\end{array}\right] e^{t}(\cos 3 t+\sin 3 t)} \\
& =e^{t}\left[\begin{array}{l}
\cos 3 t+\sin 3 t \\
2 \cos 3 t+\sin 3 t+i(2 \sin 3 t-\cos 3 t)
\end{array}\right]
\end{aligned}
$$

3. Which of the following are solutions?
V. $e^{t}\left[\begin{array}{l}\cos 3 t+i \sin 3 t \\ 2 \cos 3 t+\sin 3 t+i(2 \sin 3 t-\cos 3 t)\end{array}\right]$
b. $e^{t}\left[\begin{array}{c}\cos 3 t+c \sin 3 t \\ 2 \cos 3 t+c \sin 3 t\end{array}\right]$
4. Which of the following are solutions?
a. $e^{t}\left[\begin{array}{l}\cos 3 t \\ 2 \sin 3 t\end{array}\right]$
b. $e^{t}\left[\begin{array}{l}\cos 3 t \\ 2 \cos 3 t+\sin 3 t\end{array}\right]$

8.1 Matrix exponential and linear systems

We learn

- a new approach to solving homogeneous systems
- how to solve homogeneous systems when the matrix is not diagonalizable

Vocabulary:

- fundamental matrix of a linear system
- Matrix exponential
- Nilpotent matrix $=\operatorname{marix} A$ with $A^{n}=0$ for sure n

A different approach when the matrix is not diagonalizable is described in section 7.6 in terms of generalized eigenvectors and generalized eigenspaces. This is done in more advanced courses like Math 4242.

$$
\begin{aligned}
\text { e.g. }\left[\begin{array}{ll}
0 & 3 \\
0 & 0
\end{array}\right]^{2} & =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
{\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]^{3} } & =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Page 479 question 2
Find a fundamental matrix of the system and solve the initial value problem, where

$$
\underline{x}^{\prime}=\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right] \underline{x}, \underline{x}(0)=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

Solution: Char. poly $=(2-\lambda)^{2}-4=\lambda(\lambda-4)$
Finde-vectors: $\lambda=0$. Null $\left[\begin{array}{cc}2 & -1 \\ -4 & 2\end{array}\right]$ hat bairns $\left[\begin{array}{l}1 \\ 2\end{array}\right]$
$\lambda=4$, Null $\left[\begin{array}{ll}-2 & -1 \\ -4 & -2\end{array}\right]$ hal Gains $\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
General solution $c_{1}\left[\begin{array}{l}2 \\ 2\end{array}\right]+c_{2} e^{t t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$

$$
=\left[\begin{array}{cc}
1 & e^{4 t} \\
2 & -2 e^{4 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\underline{x}(t)
$$

This a fund damental matrix $\mathbb{1}$ Impose the initial condition

$$
x(0)=\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] } & =\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]^{-1}\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \\
& =\frac{-1}{4}\left[\begin{array}{cc}
-2 & -1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & -\frac{1}{4}
\end{array}\right]\left[\begin{array}{c}
2 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{l}
3 / 4 \\
5 / 4
\end{array}\right]
\end{aligned}
$$

Symbolically $x(t)=\Phi(t) \subseteq$

$$
x(0)=\overleftarrow{\Phi}(0) \subseteq, \quad \subseteq=\Phi(0)^{-1} x(0)
$$

Finally $x(t)=\Phi(t) \Phi(0)^{-1} \underline{x}(0)$ A fundamental manx for the system is a matrix whose columns are a basis for the solution space.
It is not unique.

Definition.

A fundamental matrix for a system $x^{\prime}=A x$ is a matrix Φ whose columns form a basis for the space of solutions to the system.

Theorem. Let Φ be a fundamental matrix for $x^{\prime}=A x$, and suppose there is an initial condition $x(0)=x _0$. Then the solution to this initial value problem is

$$
x(t)=\Phi(t) \Phi^{-1}(0) x_{0}
$$

Definition.
The exponential of an $n \times n$ matrix A is

$$
e^{A}=I+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\cdots
$$

This always converges. $\frac{A^{d}}{d!}$ is a manx
Where in each entry we have a sum of products of d of the ernes of A Dividing by d ! we yet convergence in each ending of e^{A}. Properties:

1. $e^{\wedge}\{A+B\}=e^{A} e^{B}$, provided A and B commute $(A+B)^{d}=\sum^{d}\binom{d}{r} A^{n} B^{d-r}$ to and this works if $A B \stackrel{\Gamma}{=} \overline{\bar{B}} A^{\circ}$.
2. $e^{\wedge} 0 \approx I$
3. $(\mathrm{d} / \mathrm{dt}) \mathrm{e}^{\wedge}\{\mathrm{At}\}=A e^{A t}$
by dom $\frac{d}{d t}\left(I+A t+\frac{1}{2!} A^{2} t^{2} t\right)=0+A+A^{2} t^{t}+$

Page 480 question 23. Show that the matrix A is nilpotent. Find $\left.e^{\wedge} \wedge A t\right\}$ where

Solutiver:

$$
A=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$$
A^{2}=\left[\begin{array}{ccc}
0 & 0 & -2 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right] \quad A^{3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
e^{A t} & =I+A t+\frac{1}{2!}(A t)^{2}+\underbrace{\frac{1}{3}!}(A t)^{3} \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]+\left[\begin{array}{ccc}
t & -t & -t \\
t & -t & t \\
0 & 0 & 0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ccc}
0 & 0 & -2 t^{2} \\
0 & 0 & -2 t^{2} \\
0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1+t & -t & -t-t^{2} \\
t & 1-t & t-t^{2} \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Theorem 2. The solution to $x^{\prime}=A x, x(0)=x _0$ is $\underline{x}(t)=e^{A t} \underline{x}_{0}$
Proof.

$$
\frac{d}{d t}\left(e^{A t} \underline{x}_{0}\right)=A e^{A t} x_{0} \text { so }
$$

$x=e^{A t} x_{0}$ satisfies the equation and
$x(0)=x_{0}$
Like page 480 question 25:
Solve $x^{\prime}=A x, x(0)=(1,2,3)$ with A as in question 23.

$$
A=\left[\begin{array}{rrr}
1 & -1 & -1 \\
1 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Completed after class:

$$
x(t)=e^{A t}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{ccc}
1 t t & -t & -t-t^{2} \\
t & 1-t & t-t^{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

computed on the last page

$$
=\left[\begin{array}{c}
1-4 t-3 t^{2} \\
2+2 t-3 t^{2} \\
3
\end{array}\right]
$$

Theorem 3. $e^{A t}=\Phi(t)-\Phi(0)^{-1}$
Proof. Both sides appear in solutions
to $x^{\prime}=A x, x_{0}=x(0)$ for every x_{0} :

$$
x=e^{A t} x_{0}=\Phi(t) \Phi(0)^{-1} x_{0} \quad \square
$$

Like question 9 .
Compute $\mathrm{e}^{\wedge\{A t\}}$ when $A=\left[\begin{array}{cc}2 & -1 \\ -4 & 2\end{array}\right]$
Solution: The fundamental malnx-or
$x^{\prime}=A x$ is $D=\left[\begin{array}{ll}1 & e^{4 t} \\ 2 & 2 e^{4 t}\end{array}\right]$ and
$\Phi(0)^{-1}=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{4}\end{array}\right]$
and $\left.e^{A t}=\Phi \Phi(0)^{-1}=\left[\begin{array}{ll}1 & e^{4 t} \\ 2 & -2 e^{4 t}\end{array}\right]\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{4}\end{array}\right]\right)$

$$
=\left[\begin{array}{cc}
\frac{1+e^{4 t}}{2} & \frac{1-e^{4 t}}{4} \\
1-e^{4 t} & \frac{1+e^{4 t}}{2}
\end{array}\right]
$$

Question 26.
Solve the IVP $x^{\prime}=\left[\begin{array}{cc}7 & 0 \\ 11 & 7\end{array}\right] \underline{x}, \lambda(0)=\left[\begin{array}{c}5 \\ -10\end{array}\right]$
Note $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ is not diagonalizable and the e-val /e-vec approach doesu't help. Also $\left[\begin{array}{ccc}7 & 0 \\ 1 & 7\end{array}\right]$ is not nilpotent. Solution
We calculate $e^{\left[\begin{array}{ll}7 & 7 \\ l\end{array}\right]} t$
because $\left[\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ commute
We get $\left[\begin{array}{cc}e^{7 t} & 0 \\ 0 & e^{7 t}\end{array}\right] \cdot\left[\begin{array}{cc}1 & 0 \\ 11 t & 1\end{array}\right]$

$$
=\left[\begin{array}{ll}
e^{7 t} & 0 \\
11 t e^{7 t} & e^{7 t}
\end{array}\right]
$$

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
a & b \\
b & b
\end{array}\right]=I+\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ll}
a & 0 \\
0
\end{array}\right]^{2}+\frac{1}{3!}[} \\
0 \\
1+b+\frac{1}{2!}!+\cdots
\end{array}\right]=\left[\begin{array}{ll}
e^{3}+ & 0 \\
0 & e^{b}
\end{array}\right] .
$$

Pre-class Warm-up!!!
What is $e^{\wedge}\{A t\}$ when $A=\left[\begin{array}{ll}0 & 3 \\ 0 & 0\end{array}\right]$?
a. $\left[\begin{array}{ll}3 & t \\ 0 & 3\end{array}\right]$
b. $\left[\begin{array}{ll}0 & 3 t \\ 0 & 0\end{array}\right]$
c. $\left[\begin{array}{cc}1 & 3 t \\ 0 & 1\end{array}\right]$
d. $\left[e^{3 t}\right]$
e. None of the above.

Another question: what is $\left.e^{\wedge} \wedge B t\right\}$ when

$$
B=\left[\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right]
$$

